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The swelling-activated chloride current, commonly referred to as ICl,swell, is an outwardly-

rectifying anion current that plays an important role in cell volume regulation, among other 

capacities. Despite several decades of research, the molecular identity of the channel 

responsible for this chloride current remains controversial. Recent indications that key 

endogenous sulfhydryl groups are capable of modifying the current led us to assess the 

effects of several divalent cations, including zinc, on ICl,swell.  Zinc is known to tightly 

associate with sulfhydryl groups such as in zinc finger proteins. We found that extracellular 

zinc irreversibly inhibited ICl,swell at a site downstream in the signaling cascade. Moreover, 

zinc blocking kinetics were voltage dependent, suggesting interaction with a site within the 
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electric field, across the pore of the channel responsible for ICl,swell. The importance of 

sulfhydryl groups was confirmed by demonstrating irreversible block by N-

ethylmaleimide, a sulfhydryl alkylating reagent. In contrast, nickel failed to block ICl,swell, 

and as noted in previous studies, cadmium preferentially blocked the time-dependent 

component of ICl,swell.  These data confirm the importance of sulfhydryl groups in the 

function of ICl,swell. Moreover, by demonstrating the voltage-dependence of block, the data 

strongly suggest the critical sulfhydryl group is within the channel pore.  These biophysical 

characteristics of native ICl,swell are markers that should be recapitulated in expressed  

proteins claimed to be responsible for ICl,swell.  
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CHAPTER 1: INTRODUCTION 

 

 

The volume regulated anion channel (VRAC),  the volume sensitive outwardly 

rectifying anion channel (VSOR), and the volume sensitive organic osmolyte-anion 

channel (VSOAC) are polynyms for the ubiquitously expressed anion channel present in 

mammalian tissues that mediates the current ICl,swell. This channel and perhaps others are 

responsible for volume regulation of cells in the face of an osmotic gradient. In addition to 

volume regulation, VRAC has been putatively linked to membrane potential regulation, 

cell proliferation, and apoptosis (Mongin, 2016). The current passed by VRAC is known 

as ICl,swell with an anion permeability sequence of I->SCN->NO3->Br->Cl-

>aspartate>gluconate (Cahalan et al., 1988). Despite recent efforts at further 

characterization, the molecular identity of VRAC remains controversial.  

Although ICl,swell can be recorded in the absence of extacellular and intracellular 

calcium,  the current is modulated by other divalent cations. Work by Ren and Baumgarten 

(2005) found that cadmium (Cd2+) suppresses the time-dependent inactivation of ICl,swell 

that appears at positive potentials in cardiomyocytes. Furthermore, recent work with 

murine DI TNC1 astrocytes in our lab suggests that sulfhydryl groups are critical for the 

function of native ICl,swell (Park, 2016).  

The divalent cation zinc is commonly associated with cysteine residues in cellular 

proteins and can be chelated by sulfhydryl groups, such as in zinc finger proteins (Pace and 
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Weerapana, 2014; Noh et al., 2015).  Therefore, we postulated that zinc might inhibit  

ICl,swell by interaction with sulfhydryl moieties associated with cysteine residues. 

 

1.1  Significance and history of ICl,swell 

1.1.1 Significance 

VRAC has been found in numerous mammalian cell types, including but not limited 

to human embryonic kidney cells, human gastrointestinal cells, human T lymphocytes, 

murine astrocytes, and cardiomyocytes (Cahalan & Lewis, 1988; Hazama & Okada, 1988; 

Kimelberg, 2005). It is activated in response to swelling, and is key to maintaining cell 

volume homeostasis. In all cell types, regulating cell volume is critical to survival. 

Osmotically induced cell swelling can lead to cell lysis. Excessive cell shrinkage leads to 

protein misfolding and, ultimately, apoptosis. 

In traumatic brain injury, damage to the blood brain barrier enables cytotoxic edema 

which leads to astrocyte swelling. ICl,swell activation has been linked to this swelling in an 

attempt to mediate regulatory volume decrease in vivo (Haskew et al., 2002). However, 

malfunction of ICl,swell has also shown to contribute to cytotoxicity supporting efflux of 

both glutamate and aspartate (Haskew et al., 2002).  

 Work on cardiac myocytes confirms ICl,swell has multiple functions.  This current 

contributes to cell volume regulation, cell membrane potential, action potential duration, 

the response to stretch, and is activated in models of heart failure (Clemo & Baumgarten, 

1999;  Ren & Baumgarten, 2005). In addition, it is known to protect against ischemia-

reperfusion injury (Mulvaney et al., 2000).  
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1.1.2 History 

Using whole cell patch clamping, Cahalan and Lewis (1988) first observed an 

outwardly rectifying chloride current, with an Erev = -45 mV, in murine T lymphocytes. 

Their studies revealed a chloride current with apparent ATP dependence as well as an 

osmotic gradient dependence, and most intriguingly a membrane stretch dependence in 

order to be activated. Simultaneously, Hazama and Okada (1988) determined that human 

epithelial cells exhibited a regulatory volume decrease (RVD) when hypotonically 

challenged that was mediated by a chloride current. Decreasing extracellular chloride 

concentration in conjunction with hypotonic challenge facilitated the regulatory volume 

decrease. They found that chloride channel blockers, specifically SITS, inhibits the 

observed regulatory volume decrease. Both groups are credited with discovering ICl,swell; 

however it was not referred to by this name until the mid-1990’s. 

1.1.3 Attempts at molecular characterization 

 Claims that candidates such as P-glycoprotein (Valverde et al., 1992; Gill et al. 

1992) and regulator pICln (Paulmichl et al. 1992), as well as specific members of the C1C 

family of channels (Duan et al., 1999), are responsible for ICl,swell have been firmly 

rejected by numerous groups working to identify VRAC. More recent claims regarding the  

molecular identity for VRAC have also been controversial. The claim that SWELL1 

(LRRC8A), a leucine-rich transmembrane protein, is an essential component of VRAC was 

proposed in 2014 (Qiu et al., 2014; Voss et al., 2014). Using siRNA techniques to 

knockdown LRRC8A, significantly decreased VRAC currents were reported in Xenopus 

Oocytes, Human Embryonic Kidney Cells, HeLA cells, and CD4+ T lymphocytes. 

However, others demonstrated ICl,swell activation in the absence of LRRC8A in Human 
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Embryonic Kidney cells (HEK293), HeLa cells, and HCT116 cells and concluded that this 

protein is not essential (Sirianant et al., 2016).  One of the problems groups face when 

working on ICl,swell  is the lack of a high-affinity ligand, which has limited efforts to 

directly purify the channel protein.  

 

1.2  Biophysical properties of ICl,swell 

1.2.1 Rectification and time dependent inactivation 

 Under physiological chloride conditions, where [Cl-]I is 20 mM and [Cl-]o is 100 

mM,  ICl,swell undergoes outward rectification with a reversal potential near that of ECl 

which is -42 mV (Cahalan et al., 1988). Under symmetrical chloride conditions, ICl,swell 

still maintains outward rectification at a modified reversal potential of 0 mV.  In contrast, 

other chloride currents, such as ICl,cAMP do not rectify in symmetrical chloride (Ren & 

Baumgarten, 2005). As a result, this characteristic has been used to identify ICl,swell. 

Additionally ICl,swell is a calcium-independent chloride channel, and can be elicited in the 

absence of extracellular calcium combined with strong intracellular calcium buffering as 

previously indicated (Hagiwara et al., 1992; Tseng, 1992). 

 Interestingly, ICl,swell maintains a time dependent component exhibited in multiple 

cell types. At highly positive potentials, ICl,swell exhibits time-dependent decay in rabbit 

cardiomyocytes (Ren & Baumgarten, 2005), murine astrocytes (Park, 2016), as well as 

other cell lines. The basis for this time dependent decay is unknown. Cadmium (Cd2+), 

added to the bath solution, is able to negate the decay up to at least +100 mV and reveals a 

slow delayed rectifying current that is blocked by addition of 1 mM barium (Ba2+). This 
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combination of divalent cations facilitates a time-independent expression of ICl,swell at 

various potentials (Ren & Baumgarten, 2005). 

1.2.2 Permeability sequence and conductance 

 Eisenman produced a series of 11 sequences for both monovalent cations and 

anions that proposed ion selectivity is based on the energy required to remove an ion from 

its hydration shell and the electrostatic energy required for binding of the ion to a site in 

the channel (Hille, 2001). VRAC has a permeability sequence that obeys the Eisenmann 

type I selectivity sequence for anions: I->SCN->NO3->Br->Cl->aspartate>gluconate 

(Mongin, 2016). In this sequence, the rate-limiting step is believed to be the dehydration 

of anions.   

 The average single channel conductance for VRAC is 50-80 pS at positive 

potentials, and 10-20 pS at negative potentials (Mongin, 2016). This conductance is much 

higher than members of the ClC family of chloride channels, as well as the CFTR family, 

which are largely considered to have conductance values in the single pS range.  

1.2.3 Pathways of activation.  

ICl,swell can be activated by multiple stimuli that act through a complex cascade. 

Under iso-osmotic conditions, ICl,swell has been activated by cell inflation (Hagiwara et 

al., 1992), anionic amphipaths (Tseng, 1992), β1-integrin stretch receptor activation 

(Browe & Baumgarten, 2003), AngII (Browe & Baumgarten, 2004), EGF (Browe & 

Baumgarten, 2006), H2O2 a ROS derivative (Browe & Baumgarten, 2004), and ET-1 (Du 

& Sorota, 2000; Deng et al., 2009). In vivo activation of ICl,swell is largely attributed to 

hypotonic challenge ultimately leading to reactive oxygen species (ROS) production or 

ROS production under isosmotic conditions. 
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1.2.3 (a) Hypotonic Challenge 

 ICl,swell is known to activate as a result of hypotonic challenge which 

induces cell swelling. Cell swelling itself is non-specific with regards to activation of 

ICl,swell as it can activate a membrane stretch response, reduce ionic strength, dilute ion 

concentration, or alter macromolecule concentration. All of which have the potential to act 

as a volume sensor in the cascade of ICl,swell activation (Browe and Baumgarten, 2003). 

 ICl,swell activation via membrane stretch has been elucidated in work with 

cardiomyocytes by Browe and Baumgarten (2003). Activation of β-1 integrin stretch 

receptors triggers a signaling cascade with Angiotensin II as an intermediate that ultimately 

elicits ICl,swell via interaction with NADPH oxidase (NOX) as seen in Figure 1. A selective 

blocker of ICl,swell, tamoxifen, blocks the identified current in the presence of stretch.  

ICl,swell activation mediated by swelling is also due to upstream AT1 receptor 

activation by Angiotensin II which proceeds to activate EGFR kinase and upregulate PI-3 

kinase activity resulting in ROS production by NOX. It appears that mechanical membrane 

stretch and osmotic swelling, both, stimulate many of the same signaling molecules that 

lead to current activation.  

1.2.3 (b) Activation induced by ROS 

 As downstream effectors in the stretch and swelling-activated pathway, reactive 

oxygen species (ROS) are known activators of ICl,swell.  Both NADPH oxidase and the 

mitochondria are two sources of ROS known to activate ICl,swell (Browe and Baumgarten, 

2003; Deng et al. 2009). NADPH oxidase, a distal component of the stretch activated 

pathway, is activated by EGF/R and PI-3K following stimulation by Angiotensin II. 

NADPH oxidase activation results in production of reactive oxygen species (ROS). This 
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ROS subsequently interacts with the mitochondria resulting in further ROS production 

including O2
- which is rapidly dismutated to a membrane permeant H2O2 as can be seen in 

Figure 1. This final form of ROS is what ultimately activates ICl,swell with its site of action 

hypothesized to be at the channel responsible for the chloride current, however that remains 

unconfirmed. Browe and Baumgarten (2003) show extracellular catalase is capable of 

inhibiting ICl,swell lending credence to this hypothesis. 

 Additionally mitochondrial ROS, in the absence of hypotonic challenge and 

downstream of NADPH oxidase activation, can act to elicit ICl,swell as well. Application 

of 20 μM acetylcholine (Ach) elicits a Cl- current with characteristics of ICl,swell that is 

blocked by 5HD, a mitochondrial KATP channel inhibitor (Browe & Baumgarten, 2005). 

Furthermore the complex III inhibitor and KATP channel opener diazoxide also activates a 

Cl- current with the same biophysical and pharmacological characteristics as ICl,swell under 

isosmotic conditions (Browe & Baumgarten, 2005). 

 Separately, application of exogenous H2O2 has also been shown to elicit ICl,swell, 

which is subsequently quelled by extracellular catalase (Browe and Baumgarten 2003). 

The ability to quench ROS using antioxidants, either endogenous or exogenous, has proven 

critical to modulating ICl,swell.  
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Figure 1: Signaling cascade involved in activating ICl,swell elucidated by Deng et al. 

(2009). Both NADPH oxidase (NOX) and the mitochondria produce ROS that 

subsequently activate ICl,swell. In this situation, ebselen is believed to be acting as a 

peroxidase, dismutating intracellular H2O2 to H2O, quenching ROS. Application of 

exogenous H2O2 alone is capable of eliciting ICl,swell.  
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1.3  Pharmacology of ICl,swell  

 Stated earlier, a major factor contributing to the difficulty in identifying the channel 

responsible for ICl,swell is finding a high affinity, and highly selective, blocker of the Cl- 

current. To date, the most potent blocker of ICl,swell is an ethacrynic-acid derivative known 

as DCPIB (Decher et al., 2001). The IC50 of DCPIB for ICl,swell is  2.7 μM (Liang et al., 

2014), and 10 μM DCPIB is routinely used to reversibly inhibit the Cl- current in  

pulmonary artery smooth muscle cells, Xenopus oocytes, guinea pig atrial cardiomyocytes, 

and murine diencephalic astrocytes. Its selectivity is believed superior when compared to 

the estrogen receptor antagonist tamoxifen, as DCPIB does not inhibit INa, ICa, or IC1C, 

and IKs (Decher et al., 2001).  

 An earlier agent, DIDS, is another molecule capable of inhibiting ICl,swell. Like 

Dideoxyforskolin and verapamil, DIDS is capable of distinguishing between ICl,swell and 

CFTR. However these agents, along with many others, appear tissue specific with regards 

to their efficacy (Decher et al., 2001).  

Recent work by Park (2016) has shown that sulfhydryl modifiers, specifically 

charged MTS reagents, are capable of inhibiting ICl,swell in different cell types such as  DI 

TNC1 astrocytes and HEK-293 human embryonic kidney cells. Charged MTS reagents, 

specifically MTSES and MTSEA-biotin, are alkylthiosulfonates capable of forming 

disulfide linkages with sulfhydryl groups of cysteine residues (Kenyon & Bruice, 1977). 

These findings suggest a critical sulfhydryl group, extracellularly available, is capable of 

modulating ICl,swell. 

Another important molecule capable of modulating ICl,swell is ebselen, a seleno-

organic small molecule with known affinity for sulfhydryl groups. This anti-inflammatory, 
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cytoprotective compound is a membrane permeant glutathione peroxidase mimetic that 

dismutates H2O2 to H2O. It has been shown to suppress ICl,swell in cardiomyocytes by 

Deng et al. (2009). This action, believed to be occurring intracellularly, distal to NADPH 

oxidase ROS production, results in the quenching of ROS directly responsible for 

activating ICl,swell as can be seen in Figure 1. 

 

1.4  Objective of the present study 

New work by Park (2016) has shown that ebselen, capable of abrogating ICl,swell, 

appears to mediate its actions by sulfhydryl modification. It is well known that ebselen 

binds metallothioneins, a family of cysteine rich proteins, with high affinity. Its affinity for 

cysteine residues is attributed to a strong electrophilic potential which mediates the 

formation of a covalent selenium-sulfur bond between the selenium of ebselen and the 

sulfur of cysteines (Sakurai et al., 2006). Ebselen-metallothionein interaction has been 

linked to the oxidation of endogenous thiolate ligands by the selenium of ebselen, which 

results in the ejection of zinc (Jacob et al., 1998). 

Zinc (Zn2+), a trace element with high affinity for thiols in-vivo, has been shown to 

bind directly to cysteine and histidine residues of certain cation and anion channels, 

including voltage gated potassium channels and skeletal muscle chloride channels. Zinc 

has been shown to either augment or inhibit activity of these channels (Duffield et al., 2005; 

Noh et al., 2015) by modifying gating conditions.  
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In extending the research into divalent cation modulation of ion channels, this study 

assesses the following major aims: 

 

1. Determine whether zinc, or other divalent cations, modulate ICl,swell 

2. If zinc is found to inhibit ICl,swell, determine if block by zinc is voltage 

dependent 

3. Based on the findings by Park (2016) suggesting sulfhydryl involvement, 

determine if sulfhydryl modifiers inhibit ICl,swell downstream of H2O2. 

 

This study highlights the novel findings of an irreversible inhibition of ICl,swell by 

zinc, acting at a site downstream of H2O2, and lends credence to the existence of a 

sulfhydryl group that is capable of modulating ICl,swell. Furthermore the ability of zinc to 

block ICl,swell in a voltage dependent manner indicates zinc senses the electric field, and 

proposes that zinc has a binding site in the pore of the channel responsible for ICl,swell. In 

comparing block by zinc to other divalents we find that zinc does not inhibit the decay 

component of ICl,swell as cadmium does. In concert with nickel’s inability to inhibit 

ICl,swell, this reveals a distinct mechanism that exists for zinc block of the chloride current. 

Finally, inhibition of ICl,swell by the sulfhydryl modifier N-ethylmaleimide provides 

further evidence of a critical sulfhydryl group downstream of H2O2 that is consistent with 

previous work by Park (2016).  
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1  Culture of DI TNC1 astrocytes 

 DI TNC1 astrocytes are an immortalized cell line from one day old rat diencephalon 

(Radany et al., 1992). Uniquely they do not contain aquaporins, mediating water transport 

through ion channels including ICl,swell. DI TNC1 astrocytes passages 5-20 were used for 

these studies.  Tissue culture dishes (5 mL x 60 x 15 mm) were pretreated with Corning 

CELLBIND. DI TNC1 cells were cultured in the pretreated dishes using a solution of 

DMEM (Corning Cellgro, 10-013-CV) supplemented with 10% by volume fetal bovine 

serum (Sigma-Aldrich, F2442), and 1% by volume penicillin/streptomycin (Cellgro 30-

002-CI). The cells were kept at 37°C in an atmosphere of 5% CO2 and 95% air at a relative 

humidity of approximately 95%. Once the cells reached confluence, approximately 70-

80% in terms of density, the cells were split and the passage increased by 1. To split DI 

TNC-1 cells, a brief wash with approximately 5 mL of HyClone (Thermo Scientific, 

SH40007-13) was followed by incubation with 4 mL of 0.25% trypsyin-EDTA 

(gibco/Thermo Fisher Scientific, 25200056) for 20 min at 37°C.  Once the cells had 

dissociated from the surface of the dish, 8 mL of DMEM solution was applied to the plate 

to inhibit trypsin. The total volume, with cells, was transferred to 15 mL centrifuge tubes. 

The cells were centrifuged at 2500 RPM for 2-4 minutes using an IEC centrifuge device. 

Following this, the supernatant was removed by aspiration, and the pellet gently re-
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suspended in 5 mL of DMEM solution. Immediately following this, 2.0 mL of the cell 

containing solution was plated onto a plate containing 5 mL of DMEM solution and the 

passage was increased by 1. This plate was placed back in the incubator. The remaining 

cells, suspended in 3 mL DMEM in the centrifuge tube, were incubated for 1 h. Following 

incubation the tube was centrifuged again and the supernatant aspirated. The pellet was re-

suspended in 5 mL of 1T bath solution for use when patch clamping. 

 

2.2  Experimental solutions and drugs 

 Bath and pipette solutions were designed to isolate the Cl- current. Isosmotic bath 

solution (1T; 320 mOsm/kg; where T indicates times isosmotic) contained (in mM): 90 N-

methyl-D-glucamine-Cl, 3 MgCl2, 10 HEPES, 10 glucose, 5 CsCl, 0.2 CdCl2 and mannitol 

was added to adjust solution osmolarity to approximately 320 mOsm. Except as noted in 

Figure 12, cadmium is always included in the bath solution. Solution pH was adjusted to 

7.35 using CsOH. Isosmotic pipette solution contained (in mM) 110 NMDG-Glucuronate, 

20 TEA-Cl, 0.15 CaCl2, 10 Cs2EGTAH2, 10 HEPES, 5 Mg-ATP, and 0.1 Tris-GTP. 

Additionally 0.053 mM diazoxide, a mitochondrial KATP channel activator, was added to 

the pipette solution to ensure ICl,swell activation. Pipette solution pH was adjusted to 7.2. 

The bath solution was stored at room temperature and pipette solution was purged under 

argon gas and frozen at -20°C in 500 μL aliquots.  

 Diazoxide (Sigma Aldrich, 364-98-7) was prepared at a stock concentration of 40 

mM and stored in 500 μM aliquots at -20°C. It was added to pipette solution for a final 

concentration of 53 μM. DCPIB (Sigma Aldrich, 82749-70-0), an ethacrynic-acid 

derivative, was prepared as a 10 mM stock solution in 1T and aliquoted into 100 μM 
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aliquots. Aliquots were stored at -20°C. Stock solution was added to the bath solution 

immediately before use to reach the desired concentration discussed in the results section. 

The stock solution of 100 mM zinc in water was prepared using anhydrous zinc (II) 

chloride (Sigma Aldrich, 7646-85-7). Zinc chloride was dissolved under heat to avoid 

formation of zinc hydroxychloride precipitates. The solution pH was neutral and was stored 

at 2°C. Stock solution was added to 1T bath solution immediately before use to reach the 

desired concentration discussed in results section. The stock solution of 100 mM nickel in 

water was prepared using nickel (II) chloride (Sigma Aldrich, 7791-20-0). The solution pH 

was tested to 4.2 to ensure nickel hydrolysis in solution. Stock solution was stored at 2°C. 

Stock solution was added to 1T bath solution immediately before use to reach the desired 

concentration discussed in the results section. N-ethylmaleimide (NEM) (Sigma Aldrich, 

E3876) was stored at -20°C. The head space of the containing bottle was purged with argon 

in an attempt to prevent exposure to air. It was prepared in 1T solution at experimental 

concentrations immediately prior to use. Stock solution of 200 mM cadmium chloride in 

1T was kept at 2°C and added into the bath solution at 200 μM for studies, except as 

indicated. Stock hydrogen peroxide (H2O2) 30% by wt in aqueous solution (Fisher 

Scientific, 7722-84-1) was stored at 2°C.  Preparation of 500 μM H2O2 in 1T bath solution 

occurred immediately prior to use to avoid decomposition. 

 

2.3  Whole-cell patch clamp and electrophysiological recordings 

 Following re-suspension in 5 mL of 1T solution, DI TNC1 cells were pipetted onto 

the glass bottom of a recording chamber and allowed to settle for 10 minutes. The recording 

chamber was placed onto the stage of an inverted light microscope (Nikon) with Hoffman 
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modulation optics. A high resolution video camera (CCD72, Dage-MTI) with projection 

to an analog television was used to visualize individual cells. Cells were suprafused with 

bath solution at 2.0-2.3 mL/min and recordings were made at room temperature, 

approximately 21-23°C. Single use glass pipettes were pulled from 10 cm long, 1.1 mm 

inner diameter thin-walled borosilicate capillary tubing (Sutter Instruments). Using a 

Narishige MF-83 polisher, pipettes were fire polished to a final tip diameter of 

approximately 2.0-2.5 microns with a final resistance, in bath solution, of 3-5 MΩ. These 

pipettes were back filled with diazoxide–containing pipette solution prior to attachment to 

the holder, with average time between backfilling and giga seal formation of 4-4.5 min. 

Membrane currents were recorded in the whole-cell configuration using an Axopatch 200B 

amplifier. The ground electrode was a 3-M KCl agar bridge connected directly to the bath 

solution. Seal resistances were between values of 2-10 GΩ prior to breaking into the cell. 

A quick burst of negative pressure, via manual stimulation, allowed access to the cell or 

“break-in”. Axial resistances after break in were below 10 MΩ. All data was corrected for 

the measured liquid junction potential.  

 Voltage clamp protocols were established using the software pClamp 8.2 (Axon 

Instruments). Consecutive 550 ms voltage steps were implemented from a holding 

potential of -60 mV. Consecutive test potentials ranged from -100 mV to +80 mV in 10 

mV increments. Membrane currents were low-pass filtered at 2 kHz and digitized at 5 kHz. 

A second protocol was generated with a modified holding potential. This protocol was used 

in part of the zinc studies. It involves the same test potentials as the aforementioned 

protocol, but with a modified holding potential of 0 mV. I-V curves are representative of 

averages across the duration (550 ms) of the voltage step unless otherwise noted in the 
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results section. To minimize variability, experiments were designed to use cells as their 

own controls. Control currents were obtained immediately upon break in. Zero time for 

recordings began as soon as break in occurred. Average time between backfilling pipette 

with solution and break in was approximately 4-4.5 minutes. 

 

2.4  Intracellular application of agents 

 Backfilling the pipette with the aforementioned agents is necessary to isolate 

ICl,swell. Immediately after breaking into the cell, the first current traces are recorded under 

conditions that mimic basal chloride current expression. Identifying this basal ICl,swell 

expression allows us to use each cell as its own control. Dialysis of the pipette solution 

with cellular contents is diffusion limited, thus there is some small delay before diazoxide 

induces activation of ICl,swell. The subsequent activation of the chloride current can then 

be compared to the initial conditions and allows us to determine control values for a given 

experiment without having to gather excess data from separate cells.  

 

2.5  Statistics 

Statistics were generated using SigmaStat, the statistical component of SigmaPlot 12.5. 

Patch clamp current density data (pA/pF) are reported as mean ± SEM, and n is the number 

of cells. Reporting data in terms of current densities and as fractional current accounts for 

differences in astrocyte membrane surface area and expression of the channel. For multiple 

comparisons between different treatments, a One-Way Repeated measures analysis of 

variance (ANOVA) was performed followed by a Holm-Sidak test for pair wise 

comparison. In all cases, P<0.05 was considered to be significant.  
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CHAPTER 3: RESULTS 

 

3.1  Identification of ICl,swell in DI TNC1 astrocytes with DCPIB 

In addition to several other biophysical characteristics, identification of ICl,swell in 

mammalian tissues is achieved pharmacologically by using the molecule DCPIB (Decher 

et al., 2001). Several studies demonstrate that DCPIB is a high affinity, selective blocker 

of ICl,swell as administration of DCPIB fails to inhibit other anion currents, including those 

elicited by CFTR, Ca-activated Cl
-
 channels, members of the ClC family as well as several 

cation currents, specifically INa, IK, and ICa (Decher et al., 2001).  The selective and 

reversible block by DCPIB makes it a useful tool for identification of ICl,swell (cf., Deng et 

al., 2016; Bowens et al., 2013).  Thus to confirm we were observing ICl,swell, we added 

DCPIB to the bath solution and used bath and pipette solutions designed to isolate anion 

currents. 

ICl,swell is activated under isosmotic conditions by diazoxide (Diaz), a 

mitochondrial KATP channel activator that causes the release of ROS from complex III 

(Deng et al., 2009).  In the present studies, we evoked ICl,swell by backfilling the patch 

pipette with diazoxide (Diaz [in]; 53 μM) immediately before breaking into DI TNC1 

astrocytes. Figure 2 illustrates families of currents, corresponding I-V relationships, 

fractional currents, and the time course of current at +60 mV.  Following break-in, ICl,swell 

slowly turned on and reached a steady-state. As expected for ICl,swell, the current outwardly 
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rectified and reversed near the Cl
-
 equilibrium potential (ECl), -42 mV in physiological Cl

-
 

solutions. To pharmacologically identify ICl,swell, DCPIB (10 μM) was added to the bath 

solution. DCPIB inhibited diazoxide-induced ICl,swell by 93.2 ± 7.6% (n = 4, P <0.001) at 

+60 mV in 10.6 ± 1.3 min.  In three of these experiments, reversibility of block of ICl,swell 

by DCPIB was confirmed.  Washout of drug in isosmotic (1T) bath solution restored 

ICl,swell to 73.3 ± 7.6% (n =3, P<0.01) of fully activated ICl,swell.  Note that block by 

DCPIB reduced the anion current to a value less than that of the first recording after break-

in (Fig. 2D; open circle, dashed line).  This suggests that a fraction of ICl,swell was already 

activated at the initial time point. Some delay between breaking-in and the initial recording 

is unavoidable because the instrumentation settings must be adjusted. Therefore, diazoxide 

may have begun to act before the recording was made.  Moreover, partial activation of 

ICl,swell is sometimes observed and blocked by DCPIB under isosmotic conditions in the 

absence of a stimulus to elicit the current.   

Another characteristic of ICl,swell that distinguishes this anion channel from others 

is that ICl,swell rectifies in symmetrical Cl
-
 solutions (Baumgarten et al., 

Mechanosensitivity in Cells and Tissues, 2005). Although we did not confirm this 

biophysical characteristic in DI TNC1 cells, recent studies in DI TNC1 cells by Park (2016) 

confirmed the outward rectification under symmetrical chloride conditions. Taken 

together, outward rectification in physiologic and symmetrical Cl- gradients and block by 

DCPIB meet the diagnostic criteria to verify the current studied in DI TNC1 astrocytes is 

ICl,swell. 
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Figure 2: Extracellular [10 μM] DCPIB inhibited ICl,swell and was reversible, with 

DCPIB washout restoring diazoxide-induced ICl,swell. (A) Families of currents at full 

activation of diazoxide-induced ICl,swell (Diaz [in]), and after block by DCPIB, and after 

DCPIB washout. (B) Current-Voltage (I-V) relationships for A. Cell capacitance 7.1 pF. 

(C) Fractional currents recorded after initial full activation of diazoxide-induced ICl,swell 

(Diaz [in]), after DCPIB mediated inhibition of ICl,swell, and after washout of DCPIB. 

DCPIB inhibited 93.2 ±  7.6% (n =4, P<.001) of diazoxide induced ICl,swell in 10.6 ± 1.3 

min. Washout of DCPIB restored ICl,swell to 73.3 ± 7.56% (n =3, P<.01) of steady state 

current diazoxide induced current. (D) Time course indicating break in (○), activation 

induced by diazoxide (▲), block by DCPIB (■) and DCPIB washout (●). 
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3.2  ICl,swell is maintained upon activation by diazoxide in DI TNC1 astrocytes 

To eliminate the possibility that activation of ICl,swell was only transient and that 

current might spontaneously run down, we tested whether current activation was 

maintained. As shown in Figure 3, inclusion of diazoxide (53 μM) in the patch pipette 

under isosmotic conditions activated ICl,swell, and current reached a steady-state value in 

15.3 ± 2.1 min (n = 3).  Moreover, current activation was maintained for the duration of 

the recording, 50.3 ± 13.1 min (n = 3), without evidence of rundown.  The time to activation 

was based on repeated pulses to +60 mV yielding the same current values (Fig. 3D; arrow) 

and maintained current taken from the last pulse (arrow). Rather than running down, the 

maintained current was slightly, but not significantly, greater than the initial steady state 

current (Fig. 3C).  This is consistent with unpublished recordings in DI TNC1 cells by Park 

(2016) showing diazoxide-induced ICl,swell remains turned on for more than 5 hours 

without run down. These studies served as an important control for time and established 

that inclusion of diazoxide in the patch pipette caused prolonged activation of ICl,swell.  

Therefore, block of diazoxide-induced ICl,swell by subsequent addition of other agents 

cannot be attributed to rundown.    
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Figure 3: Diazoxide-induced ICl,swell does not run down during prolonged diazoxide 

exposure. (A) Families of currents, (B) I-V relationships and (C) fractional currents 

recorded at break in with [53 μM] diazoxide in patch pipette (Break in), after initial full 

activation (Diaz [in] Init) at 15.3 ± 2.1 min after break in, and in steady state (Diaz [in] SS) 

at 50.3 ± 13.1 min after initial full activation. Initial and steady state diazoxide-induced 

ICl,swell were not significantly different (n = 3, P = 0.445); currents normalized by current 

in steady state. (D) Time course indicating break in (○), initial activation by diazoxide (■) 

and maintained diazoxide-induced ICl,swell (▲); times of initial (Init) and steady state (SS) 

recordings are indicated as above. Arrows (↑) correspond to points at which families of 

currents for initial full activation (Diaz [in]) and steady state (Diaz [in] SS) were obtained. 
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3.3  Inhibition of ICl,swell in DI TNC1 astrocytes mediated by the divalent Zn
2+

 

Recent studies in the laboratory by Park (2016) suggest the involvement of a critical 

sulfhydryl group capable of modulating ICl,swell in DI TNC1 astrocytes. These studies 

indicate that charged, membrane impermeable MTS reagents added to the bathing media 

block ICl,swell.  This strongly suggests that one or more sulfhydryl groups, accessible from 

the extracellular face of the membrane, are critical to channel function. In addition ebselen, 

a potent glutathione peroxidase mimetic, is known to abrogate ICl,swell. It has been shown 

that ebselen is capable of interacting with sulfhydryls of cysteine groups and releasing 

coordinated zinc from those sites (Jacob et al., 1998). 

These findings lead us to hypothesize that the divalent cation zinc would inhibit 

ICl,swell, an anion channel. Based on the chemistry of zinc and experimental evidence, a 

number of biological actions of zinc are attributed to its chelation by protein sulfhydryl 

groups (Noh et al., 2015). To test this hypothesis, ICl,swell was activated by inclusion of 

diazoxide in the patch pipette, and after stable activation of the current was achieved, zinc 

was added extracellularly as a component of the flowing bath solution. 

3.3.1 Extracellular zinc inhibited ICl,swell  

Figure 4 illustrates the effect of zinc (100 μM) applied extracellularly after pipette 

diazoxide caused steady-state activation of ICl,swell. Zinc inhibited ICl,swell by 92.3 ± 1.6% 

(n = 4, P <0.001) after 44.9 ± 3.0 min (n = 4) in zinc-containing bathing solution.  After 

allowing for the solution change, inhibition of ICl,swell by zinc was well described by a 

single exponential with a time constant, τ, of  18.8 ± 2.1 min (n = 4).  
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Figure 4: Extracellular zinc (100 μM) inhibited ICl,swell. (A) Families of currents 

including current inhibited by extracellular zinc. (B) Corresponding I-V relationships and 

(C) fractional currents recorded at steady state activation of diazoxide-induced ICl,swell and 

at zinc block normalized to steady state current. Zinc inhibited 92.3 ± 1.6% (n =4, P<.001) 

of steady state current in 44.9 ± 3.0 min (n =4). (D) Time course indicating break in (○), 

activation induced by diazoxide (■), and inhibition by zinc (▲).   
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This kinetic model implies that the rate of inhibition of ICl,swell by zinc (1/τ) should 

be proportional to the concentration of zinc in solution.  Figure 5 shows that increasing the 

zinc concentration 3-fold, to 300 μM, inhibited diazoxide-induced ICl,swell more rapidly 

than 100 μM zinc, as expected. Full block occurred in 15.3 ± 0.4 min (n =10) with a time 

constant, τ, of 6.4 ± 0.9 min (n = 10). Comparing the time constants, the rate of inhibition 

of ICl,swell by 300 μM zinc was 2.94-times faster than by 100 μM zinc. The approximately 

3-fold decrease in the observed time constant for inhibition was commensurate with the 3-

fold increase in concentration of zinc.  

Preliminary experiments showed 50 μM zinc was an effective blocker and inhibited 

97.7 ± 2.7% of ICl,swell but block took 88 ± 7.9 min to develop (n = 2; data not shown). 

The average time constant was 39.4 ± 2.1 min (n = 2). Time to full block by 50 μM zinc 

was about twice that for 100 μM zinc, as expected. Because the slow onset of block at 50 

M zinc required prolonged recordings that were difficult to obtain, further kinetic analysis 

at this concentration was not undertaken.   

3.3.2  Block of ICl,swell by zinc was irreversible 

To test whether the effect of zinc on diazoxide-induced ICl,swell was reversible, zinc 

(300 μM) was washed out of the bath solution after inhibition of ICl,swell. ICl,swell failed to 

significantly recover during prolonged wash out, 43.1 ± 8.7 min, in zinc-free bath solution 

(Fig. 5C-D, n = 4).  These findings suggest that block of ICl,swell was due to a tight 

interaction between zinc and its target.  This stands in contrast to block of ICl,swell by 

DCPIB, which is rapidly reversible upon removal of drug from the bath solution. With 

regards to reaction kinetics, the lack of recovery of ICl,swell after zinc washout implies that 

the off-rate constant for zinc at its binding site is negligible when compared to the on-rate 
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constant, and significant dissociation of zinc is unlikely to occur within the time frame of 

a patch clamp experiment. 
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Figure 5: [300 μM] zinc inhibited ICl,swell, and was irrecoverable with zinc washout. 

(A) Families of currents, (B) I-V relationships and (C) fractional currents recorded at steady 

state diazoxide-induced ICl,swell, zinc block, and washout. Fractional current normalized 

to steady state ICl,swell. Zinc inhibited 94.2 ± 2.3% (n =10, P<.001) of steady state 

diazoxide-induced ICl,swell in 15.3 ± 0.4 min (n = 10). Inhibition was maintained during 

washout with 3.0 ± 0.2% (n =4, P<.001) of steady state current observed over a time period 

of 43.1 ± 8.7 min (n = 4). (D) Time course indicating break in (○), activation by diazoxide 

to steady state ICl,swell (■) , inhibition by zinc (▲), and washout (▽).   
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3.3.3 Kinetic Analysis of Zinc Mediated Inhibition 

The kinetics of ion channel inhibition by a drug often can be described as a pseudo 

first order reaction with 1:1 binding of a drug, D, to a fixed number of channels, *C, as for 

example, the block of voltage-gated sodium channels by 9-aminoacridine (9-AA) and of 

potassium channels by TEA  (Khodakhah et al., 1997).  

       kr 

   *C + D    *CD  

       kb  

This results in current inhibition that fits a single exponential function. The fractional 

change in ICl,swell current over time (-dI/dt) is proportional to the fraction of channels that 

conduct, C, 

(1)  -dI/dt = {kb [D] C} – {kr (1 - C)}  

and the time constant of inhibition, , is given by 

(2)  
-1

 = kb [D] + kr  

where kb is the rate constant for block, kr is the rate constant for unblock, and [D] is the 

concentration of drug, in this case zinc.  Because block by zinc appeared to be irreversible, 

kr must be negligible compared to kb [D], and Equ. 1 and 2 can be simplified to  

(3)  -dI/dt = {kb  [D] C}  

(4)  
-1

 = kb [D]  

Block of ICl,swell by both 100 μM and 300 μM zinc was well described by single 

exponential functions.  The reaction rates, 
-1

, were   0.053 ± 0.008 μM∙min-1 
for 100 μM 

zinc (n =4)  and 0.157 ± 0.006 μM∙min-1 for 300 μM zinc (n =10).  This approximately 3-

fold difference in reaction rate is consistent with the 3-fold increase in zinc concentration. 
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 3.3.4 Zinc inhibits ICl,swell at a downstream site 

The experiments described so far do not shed light on the location of zinc block.  

Diazoxide is thought to activate ICl,swell via mitochondrial ROS production (see Figure 1). 

One might imagine, for example, that zinc interferes with mitochondrial ROS production, 

acts at a regulatory site downstream from cellular ROS production but upstream from the 

channel, or binds to the channel itself.  Studies characterizing the signaling cascade 

responsible for eliciting ICl,swell found that exogenous H2O2 retains its ability to turn on 

the current when upstream signaling is blocked and is the most downstream activator 

identified to date (Browe and Baumgarten, 2003,2004; Deng et al., 2009).  Therefore, we 

tested whether block by zinc was upstream or downstream to the site of activation of 

ICl,swell by exogenous H2O2.  

Figure 6 shows activation of ICl,swell by diazoxide, block by 300 μM zinc, brief 

washout (5 min) to clear zinc from the flowing bath solution, and the response to 500 μM  

H2O2.  Zinc inhibited 93.1 ± 3.2 % (n = 6, P <0.001) of the diazoxide-induced ICl,swell, 

and no recovery of ICl,swell was observed during washout. Importantly, prolonged 

exposure to H2O2 in bath solution, 52.2 ± 22.1 min (n = 6), failed to significantly reactivate 

ICl,swell after inhibition by zinc.  This strongly suggests that the site of current block by 

zinc is downstream to that of current activation by exogenous H2O2.  The time course 

illustrated in Fig 6D shows the longest treatment with H2O2, almost 120 min. This 

recording was unusual, however, in that a small fraction of ICl,swell that was inhibited by 

zinc appeared to recover within about 5 min.  The basis for this modest recovery of current 

in the presence of H2O2 was unclear.  
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Figure 6: Extracellular 300 μM zinc inhibited ICl,swell, which was not recoverable in 

the presence of exogenous 500 μM H2O2. (A) Families of currents including currents 

during treatment with H2O2. (B) Corresponding I-V relationships and (C) fractional 

currents recorded normalized to steady state diazoxide induced ICl,swell. Zinc inhibited 93.5 

± 3.4 % (n =6, P<.001) of diazoxide-induced ICl,swell. H2O2 failed to recover 92.9 ± 0.8% 

(n =6, P<.001) of diazoxide-induced ICl,swell over an average time period of 52.2 ± 22.1 

min. The above time course shows exposure to H2O2 for 118.6 min. (D) Time course 

indicating break in (○), activation induced by diazoxide (▲), block by zinc (■) washout 

(□) and exposure to H2O2 (▽). 
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3.4  Voltage-dependence of zinc block of ICl,swell 

Finding that block by zinc was downstream to ICl,swell activation by H2O2 raised 

the possibility that zinc directly blocked the channel. For example, several cations inhibit 

cation channels by binding within the channel pore, and block is voltage-dependent 

because the binding site is within the electric field (Steinbach 1968; Adams 1977; Neher 

et al. 1978).   Might zinc block ICl,swell in an analogous manner? To test this possibility, 

we examined whether the kinetics of inhibition of ICl,swell by zinc was voltage-dependent. 

As zinc is a divalent cation, if it must enter the electric field in order to block ICl,swell, the 

kinetics of block should be slower at more positive potentials than at more negative 

potentials (Hille, 2001; Sheets & Hanck, 1992; Li & Baumgarten, 2001)  

 The kinetics of block of ICl,swell by 300 μM zinc with a holding potential of -60 

mV was characterized previously (see Fig. 5).  Therefore, as illustrated in Figure 7, we 

repeated the experiment using an identical series of test potentials, except the holding 

potential was shifted to 0 mV.  With a holding potential of 0 mV, the time constant, τ, for 

block was 31.7 ± 1.8 min, yielding a reaction rate
 
of 0.032 ± 0.003 μM∙min-1 (n = 4).   In 

contrast, at a holding potential of -60 mV, the time constant, τ, for block was 6.4 ± 0.9 min 

(n = 10), and the rate of block was 0.157 ± 0.005 μM∙min-1 (n = 8).  Thus, shifting the 

holding potential 60 mV positive slowed the development of block 5-fold.  

 This difference in the kinetics of development of block at the two holding potentials 

strongly suggests that zinc senses the electric field. The fraction, δ, of the electric field (i.e., 

applied transmembrane voltage) sensed at the zinc binding site can be estimated using 

Eyring rate theory (Hille, 2001; Gutfreund 1995). This considers the effect of the field on 

the barrier height, and therefore, the rate constant for hopping over the barrier to bind.  
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Because the reaction rate is the product of the intrinsic on-rate constant and the apparent 

concentration of zinc (see Eq. 1), an equivalent result can be obtained using the Nernst 

equation to estimate the effect of the field in terms on the concentration of zinc at the 

binding site. Application of the Nernst equation in this situation is given below: 

(5)     [Zn
2+

]0 mV/[Zn
2+

]-60 mV  =   exp (-zFE/RT)  

where [Zn2+] is the effective concentration of zinc at 0 and -60 mV, z is its valence, F is 

Faraday’s constant, E is the transmembrane voltage, R is the gas constant, and T is 

temperature in Kelvin.  The reaction rate for block by zinc was 4.9-fold greater at -60 than 

0 mV (Figs. 5 and 7), which would result if the concentration of zinc was 4.9-fold greater 

and rate constant was unchanged (Equ. 4).  Solving for the fraction of the field that zinc 

senses yields δ=0.31. That is to say, zinc must move through 31% of the electric field to 

reach its binding site. 
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Figure 7: [300 μM] zinc inhibited ICl,swell at Eh=0 mV with a decreased reaction rate 

as expected. (A) Families of currents, and (B) their respective I-V relationships. (C) 

Reaction rates for [300 μM] at a holding potential Eh=-60 mV and Eh= 0 mV. The average 

rate of reaction for zinc at Eh= -60 mV was 0.157 ± .005 μM.min-1 (n=8). The average rate 

of reaction for zinc at Eh= 0 mV was 0.032 ± .003 μM.min-1 (n=4). (D) Time course 

showing break in (○), activation by diazoxide to steady state ICl,swell (■), and inhibition 

by zinc (▲). Average time constant, or mean lifetime, was 31.7 ±1.8 min (n=4). 
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3.5  N-Ethylmaleimide (NEM) irreversibly inhibits ICl,swell at a downstream site 

 As previously mentioned, data from our laboratory indicates that ICl,swell can be 

inhibited by sulfhydryl modifying agents, including MTS reagents. N-Ethylmaleimide 

(NEM) is a known Michael acceptor in the Michael Addition reaction, with ability to react 

with thiol groups generating an irreversible thioether under physiological conditions 

(Smyth et al., 1960). Thus we hypothesized that extracellular NEM would inhibit ICl,swell 

providing further evidence that critical sulfhydryl group(s) modulate ICl,swell. 

 As illustrated in Figure 8, addition of 400 μM NEM to the bath solution inhibited 

94.0 ± 0.9% of diazoxide-induced ICl,swell in 16.7 ± 1.4 min (n = 7, P <0.001). Subsequent 

washout of NEM for 18.3 ± 2.1 min failed reactivate diazoxide-induced ICl,swell  and did 

not produce a significant recovery of current after NEM block (n=4, ns) Thus, the action 

of NEM is consistent with the idea that irreversible modification of critical sulfhydryl 

group(s) suppresses channel function.   
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Figure 8: ICl,swell is irrecoverable after treatment with [400 μM] NEM and 

subsequent washout. (A) Families of currents and (B) corresponding I-V relationships. 

(C) Fractional currents normalized to steady state diazoxide induced ICl,swell. Average 

value for steady state diazoxide-induced ICl,swell was 273.1 ± 64.7 pA/pF (n=7). NEM 

inhibited 94.0 ± 0.9 % of steady state diazoxide induced ICl,swell (n=7, P<.001). Washout 

failed to recover 94.2 ± 1.6 % of ICl,swell. (D) Time course showing break in (○), activation 

induced by diazoxide (■), inhibition by NEM (▲)  in 16.7 ± 1.4 min (n=7), and washout 

(▽) for 18.3 ± 2.1 min. 
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3.5.1 H2O2 Fails to Elicit ICl,swell  

In similar fashion to the aforementioned zinc studies, we wished to elucidate 

whether the site of action of NEM was upstream or downstream to ICl,swell activation by 

H2O2. To determine this, we added 500 μM H2O2 to the bath solution following a washout 

of NEM.  As illustrated in Figure 9, exposure to H2O2 for 45 – 121 min failed to 

significantly recover ICl,swell (n = 3) after NEM inhibited 93.6 ± 1.2% of diazoxide-

induced current (n = 3, P <0.001). At the end of treatment with H2O2, 95.2 ± 1.9% of 

diazoxide-induced current remained inhibited. The inability of H2O2 to elicit ICl,swell 

suggests a binding site for NEM downstream of H2O2 activity. 
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Figure 9: Inability to recover ICl,swell in the presence of H2O2 after NEM washout. (A) 

Families of currents, and (B) corresponding I-V relationships. (C) Fractional currents 

normalized to steady state diazoxide-induced ICl,swell. NEM inhibited 93.6 ± 1.2% of 

diazoxide-induced ICl,swell (n=3, P<.001). Washout failed to recover 94.3 ± 0.8% of steady 

state current. Treatment with H2O2 elicited 2.9 ± 1.9% of steady state diazoxide-induced 

ICl,swell. (D) Time course showing break in (○), activation by diazoxide to steady state 

ICl,swell (■), inhibition by NEM (▲), washout of [400 μM] NEM for 8.2 ± 1.3 min (n=3) 

(▽), and treatment with [500 μM] H2O2 for 75.7 ± 23 min (n=3) (Δ). 
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3.6  Is there a common mechanism of ICl,swell inhibition by divalent cations? 

 To evaluate the possibility of a common mechanism of ICl,swell inhibition mediated 

by divalent cations, we tested the response to nickel (Ni
2+

) under the same conditions 

employed during experiments with zinc. As previously discussed, nickel in solution has 

affinity for both cysteines and histidines at physiological pH, albeit with a greater affinity 

for histidines. Based on the ability of zinc to inhibit ICl,swell, we hypothesized that a 

similarly sized divalent known to interact with cysteines might also be able to inhibit 

ICl,swell. Preliminary studies were conducted using 100 and 300 μM nickel, and a more 

definitive analysis was done using 1 mM nickel. 

 3.6.1 Prolonged exposure to 100 μM nickel failed to inhibit ICl,swell  

 In a similar fashion to zinc, we applied 100 μM nickel to the bath solution once 

diazoxide-induced ICl,swell had reached steady state. Figure 10C shows a time course of a 

preliminary experiment in which application of 100 μM nickel for 30.4 ± 4.7 min (n = 2) 

failed to inhibit diazoxide-induced ICl,swell. ICl,swell in the presence of exogenous nickel 

was 98.6 ± 1.7% (n = 2) of steady state diazoxide-induced ICl,swell prior to nickel treatment.  

 3.6.2 Exposure to 300 μM nickel failed to inhibit ICl,swell 

 Increasing the concentration of nickel by 3-fold to 300 μM failed to inhibit 

diazoxide-induced ICl,swell over the same time frame as 300 μM zinc. 300 μM zinc was 

the working concentration, with an average time to full inhibition of ICl,swell of 

approximately 15 min. Administration of 300 μM nickel over a time period of 15.1 ± 3.3 

min (n = 2) failed to inhibit 98.3 ± 2.1% (n = 2) of diazoxide-induced ICl,swell.  
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 Figure 10: Please see next page for figure legend and description 
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Figure 10: Extracellular 100 μM and 300 μM nickel failed to inhibit ICl,swell. (A) 

Families of currents for 100 μM nickel, (B) corresponding I-V relationships, and (C) a 

time course indicating 100 μM nickel failed to inhibit 98.6 ± 1.7% (n=2) of diazoxide-

induced ICl,swell over a time period of 30.4 ± 4.7 minutes. (D) Families of currents for 

300 μM nickel, and (E) corresponding I-V relationships with nickel  I-V curve (▲) 

showing a slight increase in ICl,swell after treatment with [300 μM] nickel for 15.1 ± 3.3 

minutes (n=2).        
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3.6.3 Prolonged exposure to 1 mM nickel failed to inhibit ICl,swell 

 With no evidence of inhibition at 100 and 300 μM nickel, we increased the 

concentration of nickel to 1 mM. In these experiments, diazoxide-induced ICl,swell was 

213.9 ± 42.1 pA/pF at steady state (n = 11).  Figure 11 shows that even at 1 mM, nickel 

failed block ICl,swell.  Rather, at the end of nickel exposure for 22.3 ± 2.5 min (10.3 to 35.8 

min), ICl,swell was 112 ± 13%  of the apparent steady-state diazoxide-induced ICl,swell (n 

= 11, P = 0.368). The lack of efficacy of nickel at 1 mM despite full block at much lower 

concentrations by zinc suggests specific interactions with particular divalents are required 

to inhibit ICl,swell.  
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Figure 11: Extracellular 1 mM nickel failed to inhibit ICl,swell (A) Families of currents 

and (B) corresponding I-V relationships. (C) Fractional currents recorded normalized to 

steady state diazoxide-induced ICl,swell. The average current density for diazoxide-induced 

ICl,swell was 213.9 ± 42.1 pA/pF (n=11). ICl,swell, in the presence of [1 mM] nickel, 

increased to 112 ± 13%  of diazoxide-induced ICl,swell (n=11, P=.368). (D) Time course 

indicating break in (○) shortly after time zero, activation induced by diazoxide (■), and 

treatment with [1 mM] nickel for 22.3 ± 2.5 (n=11) (▲). 
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3.7  Evaluation of distinct mechanisms for divalent mediated inhibition of ICl,swell 

 ICl,swell expressed in cardiomyocytes exhibits a time dependent current decay at 

strongly positive test potentials (Ren & Baumgarten 2005) and analogous behavior is 

observed in DI TNC1 astrocytes in our lab.  Ren & Baumgarten (2005) showed that 

addition of 200 μM cadmium (Cd
2+

) to bath solution suppressed current decay and time-

dependence of ICl,swell, but the exact mechanism is unknown. This raised a question, “Is 

block of ICl,swell by zinc time-dependent?” To test this, we analyzed the currents inhibited 

by zinc at different time periods during the 550 ms voltage step. 

 Figure 12 show 200 μM cadmium eliminated the time dependent inactivation of 

ICl,swell. Under our standard cadmium-containing bath solution, ICl,swell was virtually time 

independent (Fig. 12A). In the absence of cadmium, however, there is a time-dependent 

decay of ICl,swell at positive potentials (Fig. 12B). Note that addition of cadmium appeared 

to suppress the initial decaying current much more strongly than the steady state current.  

 To test whether 300 μM zinc had differential effects on the initial and steady state 

current, as shown for cadmium, we compared the currents after approximately 50% block 

by zinc. As shown in Figure 12C, in the absence of cadmium, zinc blocked both the initial 

and steady-state components of ICl,swell, and ICl,swell decayed at positive potentials was 

observed in the absence of both divalents (Fig. 12A).  To quantitatively assess block by 

zinc during the test pulse, we compared the current at the initial (20-25 ms), early (30-40 

ms), and late (490-510 ms) time points during the 550 ms voltage step when zinc had 

inhibited 33%, 50% or 67% of steady state current. The ratios of early/initial currents and 

late/initial currents, when compared to steady state diazoxide induced ICl,swell, show no 

appreciable difference from currents obtained during cadmium-free treatment. This 
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information suggests there is a distinct mechanism of action between zinc and cadmium. 

In conjunction with our data that shows nickel did not mediate any significant effect on 

ICl,swell, these findings argue against a common pathway for divalent mediated inhibition 

of ICl,swell. 
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Figure 12: Comparison of block of ICl,swell by zinc and cadmium. (A) Whole cell 

recording of family of currents at steady state diazoxide-induced ICl,swell with 200 μM 

cadmium (Cd
2+

) in bath solution (standard bath solution).  No significant time-dependent 

current delay was seen at positive test potentials. (B) Distinct cell recording of family of 

currents representing ICl,swell in the absence of cadmium. Slow decay of current was 

observed at positive potentials. (C) Separate cell with recordings in the absence of 

cadmium. Both initial and steady state currents were reduced by 300 μM zinc after ~50% 

block, and time-dependent decay of current at positive potentials was observed. Zinc and 

cadmium appear to act by different mechanisms.   
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CHAPTER 4: DISCUSSION 

 

This study demonstrated, for the first time, that the divalent cation zinc is capable 

of irreversibly inhibiting a Cl- conductance with the biophysical and pharmacological 

properties of ICl,swell in DI TNC1 astrocytes. Furthermore, the rate of current inhibition by 

zinc was voltage dependent. The simplest explanation for this is that the zinc binding site 

is within the pore of the channel responsible for ICl,swell and senses the electric field across 

the pore. The ability of extracellular N-Ethylmaleimide (NEM) to irreversibly inhibit 

ICl,swell lends credence to the theory that a critical sulfhydryl group is responsible for 

modulating this chloride current. In contrast to zinc, the divalent cation nickel failed to 

inhibit ICl,swell and cadmium preferentially blocked the time-dependent component of the 

current at positive potentials.  

 

4.1  Inhibition of ICl,swell by extracellular zinc  

4.1.1  ICl,swell is inhibited by extracellular zinc in a concentration dependent manner 

This study, specifically the use of zinc, was birthed out of the hypothesis that 

sulfhydryl groups play a critical role in regulating the activity of ICl,swell. Unpublished 

work by Park (2016) shows that ebselen, a molecule with high affinity for endogenous 

thiols, is capable of modulating ICl,swell. Separately, two independent studies indicate that 

ebselen is capable of ejecting zinc from a metallothionein binding site (Jacob et al. 1998; 
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Rydzik et al. 2014). In addition, work from Park (2016) has shown charged 

methanethiosulfonate (MTS) reagents, specifically MTSES (negatively charged) and 

MTSEA-Biotin (positively charged), are capable of inhibiting ICl,swell when administered 

in the extracellular bath solution. The explicit activity of charged MTS reagents like 

MTSES and MTSET, which modify free or reduced thiols that are localized to the 

extracellular face of the membrane (Holmgren et al., 1996), identifies an extracellular 

sulfhydryl-specific mechanism that regulates ICl,swell.  

The evidence of sulfhydryl group involvement in conjunction with evidence of 

ebselen mediated ejection of zinc led us to hypothesize that zinc, known to form zinc-

cysteine complexes within protein scaffolds (Pace and Weerapana, 2014), would inhibit 

ICl,swell. Divalent cations have long been known to modify the gating of ion channels 

(Frankenhaeuser and Hodgkin, 1957; Gilly and Armstrong, 1982; Spires and Begenisich, 

1990; Davidson and Kehl, 1995). A recent review by Noh et al. (2015) highlights the ability 

of zinc to bind many different types of channels, including cysteine and histidine residues 

of the Kv11.1 channel (Human ether-á-go-go), inhibiting its activity by causing a 

conformational change in the channel protein. Perhaps the most relevant example of zinc-

sulfhydryl interaction in ion channels is the ability of zinc to inhibit chloride currents 

expressed by members of the ClC family of channels, which will be discussed in this 

section (Duffield et al., 2005). 

Our data showed inhibition of ICl,swell in the presence of extracellular zinc at 50, 

100, and 300 µM in DI TNC1 astrocytes. Fitting the time course of block with a single 

exponential decay equation for both 100 and 300 µM zinc revealed reaction rates that had 

a threefold difference between them. Because the reaction rate is a product of the intrinsic 
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on rate constant (κ) and the reactant species concentration ([Zn2+]), these findings imply 

that the variation in reaction rates depends only on the change in concentration of zinc in 

the bath and thus the reaction is likely first order or pseudo-first order in nature.  

Empirical data suggesting a first order reaction supports the concept of a single 

molecule that is bound to a single site and argues against multiple binding sites that would 

present as a mixed-order reaction such as allosteric inhibition (Hille, 2001; Zheng & 

Trudeau, 2015). In this case zinc could be binding to a single specific site coordinated by 

multiple ligands. 

4.1.2  Irreversibility of zinc mediated inhibition of ICl,swell upon zinc washout 

Our data indicates zinc mediated inhibition of ICl,swell was not reversible within 

the time course of a patch clamp experiment. Upon washout of zinc from the bath solution 

ICl,swell was not recovered, regardless of the zinc concentration used. In similar fashion, 

Park (2016) shows ebselen, and ebselen derivatives, as well as MTSES and MTSEA-Biotin 

are irreversible blockers. The apparent irreversibility mediated by zinc may be explained 

by mechanisms that support a strong zinc-sulfhydryl interaction.   

4.1.2 (a) Chelation 

Zinc readily chelates with different amino acid residues, but does so with varying 

affinity (Trzaskowski et al., 2007). In aqueous solution, the predominant form of zinc is 

[Zn(H2O)6]
+2  (Pesterfield, 2001; Burgess, 1978). Using a computational approach 

Trazskowski et al. (2007) suggest that, of all amino acid moieties, zinc’s binding affinity 

is greatest for cysteine under physiological conditions with a Gibbs free energy of -60.4 

kJ/mol. The moiety for which zinc has the next highest affinity under such conditions is 

histidine, with a Gibbs free energy of -25.4 kJ/mol. This large difference in calculated 
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Gibbs free energy implies much tighter binding of zinc to cysteine than to histidine and 

much slower dissociation. The experimental dissociation constant for zinc-sulfide 

complexes, at 25◦C in water is 1.1×10-24 M (Yi et al., 2001), reflecting high affinity, while 

the zinc-histidine dissociation constant is only 8.8×10-13 M (Chen et al., 2000). For 

comparison dissociation constant of water at 25◦C is Kw = 1.03×10
-14

 M.  

Because chelation is dependent on binding affinities, the reversible nature of 

chelation varies between metal ions and their respective ligands. Irreversibility is indicative 

of a high association constant or a low dissociation constant as described above. 

Furthermore, chelation may induce conformational changes in the protein structure that 

inhibits dissociation. 

4.1.2 (b) Protein bridging 

Zinc-cysteine complexes, specifically zinc-sulfhydryl interactions, have been 

shown to bridge two or more protein subunits causing a conformational change in a protein. 

As an example, chelation of zinc by separate cysteine residues on the α-subunit and β-

subunit of nitric oxide synthase (NOS3) enables dimerization and allows proper binding of 

a heme cofactor that is sequestered at the active site (Pace & Weerapana, 2014). Our data 

does not establish that zinc chelation by cysteine residues caused a conformational change 

that resulted in irreversible inhibition of ICl,swell. Nevertheless, such a conformational 

change induced by a zinc-cysteine interaction might sequester zinc, preventing dissociation 

and generating a condition of irreversibility. It is striking that our laboratory and the present 

work show that other sulfhydryl modifying agents are capable of irreversibly inhibiting 

ICl,swell as well. 

Supporting this hypothesis of a cation mediated block of an anion channel are 

findings by Duffield et al. (2005). They found that 1 mM zinc irreversibly inhibited ClC-1 
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muscle chloride channels in a state dependent manner with average time to block at 23 min. 

The group determined that zinc was capable of binding to a closed state of ClC-1 inhibiting 

conformational change to the open state. Furthermore, the group found that mutation of 

key cysteine residues of the ClC-1 channel, C277S and C278, significantly attenuated zinc 

block. 

4.1.3  Identifying the location of zinc site of action in the signaling cascade 

 In an effort to elucidate where zinc binds in the cascade of ICl,swell activation, we 

tested whether H2O2 applied following block of the current by zinc and zinc washout would 

reactivate the current. H2O2 is membrane permeant and is rapidly formed by superoxide 

dismutase from superoxide generated by NADPH oxidase and mitochondria (Brahmajothi 

and Campbell, 1999). Work in the laboratory has shown that activation of ICl,swell by 

mechanical stretch, osmotic swelling, and signaling molecules including angiotensin II, 

endothelin, and epidermal growth factor receptor is due to ROS (Deng et al., 2016; Park, 

2016; Ren & Baumgarten, 2005).  Although its precise target is unknown, H2O2 is the most 

distal activator identified, and exogenous H2O2 activated ICl,swell following block of 

upstream steps in the signaling cascade in cardiac myocytes as well as in DI TNC1 cells 

(Browe & Baumgarten, 2003; Park, 2016).  Therefore, failure of exogenous H2O2 to 

reactivate ICl,swell after block by zinc implies that the site of action of zinc is downstream 

to the target of H2O2 or part of the channel responsible for ICl,swell.  

 Because zinc in solution is charged, it is unlikely to passively permeate across 

membrane lipids.  However, zinc transporters exist and 15 different “Zip” transporters that 

facilitate intracellular uptake of zinc have been identified (Cousins et al., 2006). These 

transporters may facilitate access to an intracellular site of action, and the possibility that 
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exogenously applied zinc blocks current by binding to an intracellular target cannot be 

rigorously excluded.  

4.2  Voltage dependence of zinc-mediated inhibition of ICl,swell 

 The strongest evidence that zinc acts on the channel responsible for ICl,swell rather 

than an upstream or intracellular target was that block by zinc was voltage dependent. Such 

voltage dependence suggest direct interaction with the channel responsible for ICl,swell, 

and most likely, a binding site within the pore the senses the electric field across the 

membrane (Woodhull, 1973; Hille, 2001). As outlined in the results section, the rate 

constant for block was 4.9-fold greater at a holding potential of -60 mV, 0.157 ± .005 

μM.min-1, than at a holding potential of 0 mV, 0.032 ± .001 μM.min-1. This voltage-

dependence can be explained by assuming the binding site for zinc senses 31% of the 

electric field across the pore (δ = 0.31).  The classical explanation for voltage-dependent 

block is that altering membrane potential changes the height of the free energy barrier  and 

thereby the rate constant for block and unblock, as described for block of sodium channels 

(Woodhull, 1973). This analysis used an Eyring rate theory model to quantify the effect of 

membrane potential on channel block.  The strength of the effect depends on the electrical 

distance, δ, which represents the fraction of the transmembrane voltage sensed at the 

binding site. The free energy difference due to the fraction of the electric field sensed 

directly alters the rate constants.  Because the rate of block is the product of the rate 

constant and concentration of blocker at the binding site, the same result is obtained by 

assuming the electric field alters the concentration of the blocker and the height of the 

barrier and rate constants are unchanged.  In the present situation, this suggests that divalent 

zinc was drawn into the channel pore at an inside-negative holding potential (-60 mV) and 
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that its concentration was elevated, increasing the rate of block. In contrast, at a holding 

potential of 0 mV, the absence of a transmembrane voltage gradient removed the driving 

force for zinc to enter the pore from the bath, reduced the zinc concentration, and thereby 

slowed the rate of block.   

It is important to note that this discussion has focused on the effect of voltage on 

the rate of block by zinc and assumed that the voltage at the holding potential was 

responsible for altering the concentration of zinc at the binding site or, alternatively, the 

height of the barrier.  Currents were measured, however, during a series of 550-ms test 

potentials.  Thus, differences in holding potential altered the response at identical test 

potentials.  Moreover, the fraction of current blocked by zinc was unaffected when initial, 

early and late time points were compared.  These data suggest that block by zinc must have 

been a very slow process as compared to the duration of the voltage pulses applied.  The 

slow onset of zinc block during repeated pulses over many minutes (e.g., Fig. 4) supports 

this idea.  

Voltage-dependent block of channels by cations at a binding site sensing part of the 

electric field is a well-known mechanism of block. Cadmium (Cd2+) has been shown to 

inhibit KCNQ1 channels in a voltage dependent manner, with an effective electrical 

distance across the voltage drop, δ, of approximately 40% (Tai & Goldstein, 1998). In 

another example, Li and Baumgarten (2000) have shown gadolinium (Gd3+) block of 

sodium currents is also affected by voltage shifts. Both examples represent cation block of 

a channel at a site within the electric field.  

To provide further evidence of a pore binding site for zinc, one might consider 

altering the chloride gradient, which would change chloride flux through the pore. A 
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change in the rate of zinc mediated block as a result of changing the magnitude or direction 

chloride gradient. In other channels, interactions between the permeant species and 

blocking ions have been identified and described as knock-out or knock-in of the blocker 

by permeant ion flux.  Such studies were not conducted during the present studies.  

However, demonstrating knock-out or knock-in would strengthen the case for zinc block 

within the pore of the channel.  

4.2.2  Effects of state dependence 

 Another possible explanation for an apparent voltage dependence of zinc block is 

the concept of state-dependent block.  Initially characterized in detail in sodium channels 

(Hill et al., 1989; Wang and Strichartz, 2012; Desaphy et al., 2010), state-dependent block 

represents a situation where a conformational change that gates the ion channel occurs as 

a result of a change in membrane potential. Hill et al. (1989) show that binding of 

antiarrhythmics quinidine and lidocaine maintain the activated state of voltage dependent 

cardiac sodium channels. This conformational change results in both a change in 

conductance (e.g, transition from closed, to open to inactivated state) and results in an 

increased (or decreased) binding affinity of a blocker for its binding  site or access of 

blocker to its binding site. Another example is block of nicotinic ACh receptors (nACh) by  

derivatives of local anesthetics that bind the pore of a nACh receptor in the open state, 

cause depolarization, and prevent the channel from closing (Steinbach, 1968; Adams, 

1977; Neher et al., 1978).  

 This explanation might provide a plausible mechanism for the voltage dependence 

of zinc block of ICl,swell by binding to the channel.  For example,  depolarization might 

cause a conformational change that decreases zinc affinity for the binding site as indicated 
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by the decreased reaction rate at more positive holding potentials.  Conversely, 

hyperpolarization might result in a conformational change that increases zinc affinity for 

the binding site. However, state-dependent block is usually associated with conformational 

changes that alter the gating and conductance of voltage-dependent channels. Although 

ICl,swell outwardly rectifies, it does not appear to undergo classical gating with changes in 

holding potential or test potentials, and time dependent tail currents on stepping back to 

the holding potential are absent.  Rather, ICl,swell behaves analogously to inward-rectifier 

potassium channels (Kir), which display voltage-dependent currents in the absence of 

voltage-dependent gating.  Rectification in Kir channels results from voltage-dependent 

block by intracellular cations rather than gating of the pore.     

 

4.3  Inhibition of ICl,swell by Extracellular N-Ethylmaleimide (NEM)  

 Based on the chemistry of interactions between zinc and proteins, we argued that 

zinc is likely to irreversibly bind to a cysteine.  The critical role of sulfhydryl groups in 

ICl,swell function was confirmed by demonstrating that N-Ethylmaleimide (NEM), a 

sulfhydryl alkylating agent capable of generating irreversible thioether linkages, inhibited 

ICl,swell. The importance of sulfhydryl groups in channel function is not unique to ICl,swell.  

Studies on KCNQ channels show that addition of NEM irreversibly augments KCNQ2 in 

sympathetic neurons (Li et al., 2004). Furthermore, Duffield et al. (2005) demonstrated the 

importance of cysteine groups to the zinc sensitivity of ClC channels in cysteine 

mutagenesis studies.  

 Our finding that 400 µM NEM fully and irreversibly inhibited ICl,swell in DI TNC1 

astrocytes downstream of H2O2 is consistent with other recent studies in the laboratory on 
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the role of cysteines in ICl,swell. Work by Park (2016) has shown MTS reagents and other 

sulfhydryl modifiers also irreversibly blocked ICl,swell at a site downstream of H2O2. H2O2 

failed to recover ICl,swell after washout of NEM, indicating an NEM site of action 

downstream of H2O2 in similar fashion to zinc and to  the sulfhydryl modifying agents 

studied by Park (2016). Because the voltage-dependent block of ICl,swell by zinc is likely 

to involve protein cysteines, it is appealing to raise the possibility that zinc, NEM, and 

other sulfhydryl reagents all act at the same site within the pore of the ICl,swell channel.  

The data at hand strongly support the idea that each of the sites of block are downstream 

to the target for H2O2 because H2O2 fails to activate current after block.  Nevertheless, with 

the conflicting evidence of NEM membrane permeability (c.f. Hsu et al., 2005; Von 

Stedingk et al. 1997) we cannot exclude the possibility that these tools modulate cysteine 

residues at distinct locations including some that are not a component of the protein that 

comprises ICl,swell. 

 

4.4  Evaluation of a Common Mechanism of Divalent Mediated Inhibition of ICl,swell 

4.4.1  Efficacy of Nickel 

 The inability of nickel to inhibit ICl,swell at 100, 300, and 1 mM is particularly 

interesting. These findings may shed light on potential characteristics of the binding site 

and its coordination geometry. Concomitantly, the hydration shells of nickel and zinc, 

respectively, may play a role in explaining the differences in efficacy. 

 While cysteines show high affinity for zinc, and zinc finger proteins can contain 

cysteines exclusively, it should be noted that characteristic zinc finger motifs include 

histidines as well (Pace & Weerapana, 2014). Nickel has affinity for both histidine and 
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cysteine residues and is known to form complexes with specific geometries (Desrochers et 

al., 1999). Therefore, the lack of efficacy of nickel may reflect the absence of a required 

specific coordination geometry rather than a lack of affinity for particular residues. 

The Cambridge Structural Database has identified the coordination numbers of 98 

types of metal ions, including zinc and nickel, that bind to proteins. When comparing 

coordination to 4 or 6 ligands, nickel is found to binds to sites with  a coordination number 

(CN) of 6 in 61% of the time (Dudev et al., 2014). In contrast zinc is bound to sites with a 

coordination number of 4 69% of the time. Furthermore, the prevalence of hexa-

coordinated zinc is exceedingly rare and is thought to be less common than penta-

coordinated zinc (Dudev et al., 2014). Taken together, our data showing that zinc 

irreversibly blocks ICl,swell but nickel is ineffective and  the reported  zinc coordination 

geometries are consistent with the idea that zinc binds to the channel at a site with 

tetrahedral coordination geometry and that this predicted coordination geometry should be 

present in proteins postulated to represent the molecular basis of ICl,swell.  

The hydration shell of an ion in water also plays a critical role in the interaction of 

the ion with a channel and in whether an ion is permeable, impermeant or a blocker (Hille, 

2001). All ions are surrounded by waters of hydration in aqueous solution, adding to the 

perceived radius of the ion.  Often, these waters must be removed, or “stripped”, from the 

outer and all or part of the inner shell for an ion to interact with the channel’s selectivity 

filter or other critical sites.   It is striking that the rate of water substitution from the inner 

hydration shell of nickel, 104 s
-1

, is 10,000-fold slower than that for zinc, 108 s
-1

 (Hille, 

2001). This markedly decreased rate of water substitution around nickel may indicate that 

the inability to effectively strip waters of hydration limits the access of nickel to the binding 
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site and may contribute to the inability of nickel to block ICl,swell.  

It is interesting to note that copper, adjacent to zinc on the periodic table, has 

tetrahedral coordination geometry in biological systems with affinity for thiols (Rubino & 

Franz, 2012). Copper has an important role as a cofactor for enzymes and is trafficked by 

many proteins. Assessing the efficacy of copper as a modulator of ICl,swell may provide 

further evidence of a sulfhydryl interaction.  Divalent cations with clear affinity for thiols, 

as well as divalents without affinity for thiols, should be tested to further evaluate the 

properties of the binding site. 

4.4.2  Efficacy of Cadmium  

  Studies by Ren and Baumgarten (2005) showed that 200 µM cadmium in the bath 

solution blocks a rapidly inactivating component of ICl,swell at positive potentials in 

cardiomyocytes. In our studies, addition of 200 µM cadmium to the bath solution 

eliminated the rapidly inactivating component at positive potentials in DI TNC1 astrocytes. 

The exact mechanism by which cadmium mediates this effect is unknown. Nevertheless, 

the presence or absence of cadmium in the bath solution did not alter the observation that 

zinc irreversibly blocked ICl,swell.   Both zinc and cadmium are members of group 12 of 

the periodic table of elements, and thus chalcophiles, with high affinity for sulfides. That 

zinc does not mediate elimination of this rapidly inactivating component suggests zinc and 

cadmium have different mechanisms of action.  

 

4.5  Implications 

 The identity of the channel protein(s) responsible for ICl,swell remains unclear. 

SWELL1, originally believed to be a necessary component of VRAC (Qiu et al., 2014; 
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Voss et al., 2014), has been proven unnecessary in activating ICl,swell in certain cell types 

(Sirianant et al., 2016). In addition, characterization of SWELL1 (Qui et al., 2014) 

demonstrated a total insensitivity to MTS reagents that specifically modify sulfhydryls. In 

contrast, zinc, which is known to be chelated by cysteine, and the sulfhydryl modifier NEM 

irreversibly inhibited ICl,swell in native DI TNC1 astrocytes. This raises additional 

uncertainty regarding the proposed role of SWELL1. If zinc, which acted as a voltage-

dependent inhibitor, and NEM target channel regulators rather than the channel itself, these 

regulators must not have been present in the system used to characterize SWELL1.  On the 

other hand, the present findings with zinc and NEM provide additional information that 

must be accounted for in identifying the molecular basis for ICl,swell and its regulation. 

These findings, in concurrence with data from our lab using MTS reagents and ebselen 

derivatives (Park, 2016), suggest a critical role for a site that is  sensitive to exogenous 

sulfhydryl modifying agents. It would be ideal to take advantage of compounds that bind 

zinc and can be used for protein purification techniques to determine exactly where binding 

occurs. 

 

4.6  Future directions 

 Ultimately, with a wealth of data suggesting sulfhydryl groups are responsible for 

modulating ICl,swell, the efficacy of N-ethylmaleimide is encouraging. If the affinity of a 

derivative maleimide compound for the binding site is great enough, one may consider the 

use of Alexa Fluor maleimide dyes as a thiol reactive probe. Using a combination of patch 

clamping techniques and fluorescence microscopy one can activate ICl,swell using 

hypotonic challenge, or ROS inducing agents, and subsequently add a fluorescent dye-
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tagged maleimide and correlate fluorescence density to current density. Furthermore, a 

fluorescence tag would provide imaging evidence of co-localization of the protein 

responsible for ICl,swell. Such information may indicate whether or not ICl,swell is 

trafficked to the surface from some intracellular location, or is already membrane bound 

and is simply “activated” by a signaling cascade. Determining if such a localization exists 

would be useful for protein assays. 

 In the present study we observed that the divalent cation zinc is able to inhibit 

ICl,swell in a voltage-dependent manner. This suggests an interaction with the channel 

protein responsible for ICl,swell, with an indication that zinc binds in the pore. The next 

step is to identify exactly where zinc binds and confirm the mechanism by which it binds. 

 

 

 

 

 

  



www.manaraa.com

 

 

61 
 

 

 

 

REFERENCE LIST 

 

Adams, P.R. 1977. Voltage jump analysis of procaine action at frog end-plate. J Physiol. 

268:291-318. 

Baumgarten, C.M., and H.F. Clemo. 2003. Swelling-activated chloride channels in 

cardiac physiology and pathophysiology. Prog Biophys Mol Biol. 82:25-42.   

Bowens, N.H., P. Dohare, Y-H. Kuo, and A.A. Mongin. 2013. DCPIB, the proposed 

selective blocker of volume-regulated anion channels, inhibits several glutamate 

transport pathways in glial cells. Mol Pharmacol. 83:22-32. 

Brahmajothi, M.V., and D.L. Campbell. 1999. Heterogeneous basal expression of nitric 

oxide synthase and superoxide dismutase isoforms in mammalian heart: 

implications for mechanisms governing indirect and direct nitric oxide-related 

effects. Circ Res. 85:575-587. 

Browe, D.M., and C.M. Baumgarten. 2003. Stretch of β1 integrin activates an outwardly 

rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen 

Physiol. 122:689-702. 

Browe, D.M., and C.M. Baumgarten. 2004. Angiotensin II (AT1) Receptors and NADPH 

oxidase regulate Cl
-
 current elicited by β1 integrin stretch in rabbit ventricular 

myocytes. J Gen Physiol. 124:273-287. 

 



www.manaraa.com

 

 

62 
 

Browe DM, C.M. Baumgarten. 2005. Acetylcholine activates the swelling-activated 

chloride current, ICl,swell in rabbit ventricular myocytes by opening mitochondrial 

KATP channels. Biophys J. 88:289a. 

Browe, D.M., and C.M. Baumgarten. 2006. EGFR kinase regulates volume-sensitive 

chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in 

ventricular myocytes. J Gen Physiol. 127:237-251. 

Cahalan, M.D., and R.S. Lewis. 1988. Role of potassium and chloride channels in 

volume regulation by T lymphocytes. Soc Gen Physiol Ser. 43:281-301. 

Cousins, R.J., J.P. Liuzzi, and L.A. Lichten. 2006. Mammalian zinc transport, trafficking, 

and signals. J Biol Chem. 281:24085-9. 

Decher, N., H.J. Lang, B. Nilius, A. Brüggemann, A.E. Busch, and K. Steinmeyer. 2001. 

DCPIB is a novel selective blocker of ICl,swell and prevents swelling-induced 

shortening of guinea-pig atrial action potential duration. Br J Pharmacol. 

134:1467-1479. 

Deng, W., L. Baki, and C.M. Baumgarten, 2010. Endothelin signaling regulates volume-

sensitive Cl
-
 current via NADPH oxidase and mitochondrial reactive oxygen 

species. Cardiovasc Res. 88:93-100. 

Deng, W., R. Mahajan, C.M. Baumgarten, and D.E. Logothetis. 2016. The ICl,swell 

inhibitor DCPIB blocks Kir channels that possess weak affinity for PIP2. Pflügers 

Arch. 468:817-824. 

Desaphy J.F., Dipalma A., Costanza T., Bruno C., Lentini G., Franchini C., George A. L., 

Jr., Conte Camerino D. (2010). Molecular determinants of state-dependent block 

of voltage-gated sodium channels by pilsicainide.Br. J. Pharmacol. 160:1521–33 



www.manaraa.com

 

 

63 
 

Desrochers, P.J., D.S. Duong, A.S. Marshall, S.A. Lelievre, B. Hong, J.R. Brown, R.M. 

Tarkka, J.M. Manion, G. Holman, J.W. Merkert, and D.A. Vicic. 2007. Nickel-

cysteine binding supported by phosphine chelates. Inorg. Chem. 46:9221-9233. 

Dröse, S., P.J. Hanley, and U. Brandt. 2009. Ambivalent effects of diazoxide on 

mitochondrial ROS production at respiratory chain complexes I and III. Biochim 

Biophys Acta. 1790:558-565. 

Du, X.Y., and S. Sorota. 1997. Cardiac swelling-induced chloride current depolarizes 

canine atrial myocytes. Am J Physiol. 272:H1904-1916. 

Dudev, T., and C. Lim. 2014. Competition among metal ions for protein binding sites: 

determinants of metal ion selectivity in proteins. Chem Rev. 114:538-556. 

Duffield, M.D., G.Y. Rychkov, A.H. Bretag, and M.L. Roberts. 2005. Zinc inhibits 

human ClC-1 muscle chloride channel by interacting with its common gating 

mechanism. J Physiol. 568:5-12. 

Frankenhaeuser, B., and A.L. Hodgkin. 1957. The action of calcium on the electrical 

properties of squid axons. J Physiol. 137:218-244. 

Gilly, W.F., and C.M. Armstrong. 1982. Divalent cations and the activation kinetics of 

potassium channels in squid giant axons. J Gen Physiol. 79:965-996. 

Gutfreund, H. 1995. Kinetics for the Life Sciences: Receptors, Transmitters and 

Catalysts. 1st ed. Cambridge University Press. New York, NY. 346 pp. 

Hagiwara, N., H. Masuda, M. Shoda, and H. Irisawa. 1992. Stretch-activated anion 

currents of rabbit cardiac myocytes. J Physiol. 456:285-302. 

 

 



www.manaraa.com

 

 

64 
 

Haskew, R.E., A.A. Mongin, and H.K. Kimelberg. 2002. Peroxynitrite enhances 

astrocytic volume-sensitive excitatory amino acid release via a Src tyrosine 

kinase-dependent mechanism. J Neurochem. 82:903-912. 

Hazama, A., and Y. Okada. 1988. Ca
2+

 sensitivity of volume-regulatory K
+
 and Cl

- 

channels in cultured human epithelial cells. J Physiol. 402:687-702. 

Hill, R.J., H.J. Duff, and R.S. Sheldon. 1989. Class I antiarrhythmic drug receptor: 

biochemical evidence for state-dependent interaction with quinidine and 

lidocaine. Mol. Pharmacol. 36:150–159. 

Hille, B. 2001. Ion Channels in Excitable Membranes. 3rd ed. Sinauer Associates, Inc. 

Sunderland, MA. 813 pp.  

Hsu, M.F., S.P. Sun, Y.S. Chen, C.R. Tsai, L.J. Huang, L.T. Tsao, S.C. Kuo, and J.P. 

Wang. 2005. Distinct effects of N-ethylmaleimide on formyl peptide- and 

cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. 

Biochemical Pharmacology. 70:1320-1329. 

Jacob, C., W. Maret, and B.L. Vallee. 1998. Ebselen, a selenium-containing redox drug, 

releases zinc from metallothionein. Biochem Pharmacol. 248:569-573. 

Kenyon, G.L., and T.W. Bruice. 1977. Novel Sulfhydryl Reagents. Methods in Enzymol. 

47:407-430. 

Khodakhah, K., A. Melishchuk, and C.M. Armstrong. 1997. Killing K channels with 

TEA
+
. Proc Nat Acad Sci USA. 94:13335-13338. 

Kimelberg H-K. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of 

injury and target for therapy. Glia. 50:389–397 

 



www.manaraa.com

 

 

65 
 

Lewis, R.S., P.E. Ross, and M.D. Cahalan. 1993. Chloride channels activated by osmotic 

stress in T lymphocytes. J Gen Physiol. 101:801-826. 

Li, G-R., and C.M. Baumgarten. 2001. Modulation of cardiac Na+ current by gadolinium, 

a blocker of stretch-induced arrhythmias. Am J Physiol Physiol Heart Circ 

Physiol. 280:H272-H279 

Li, Y., N. Gamper, and M.S. Shapiro. 2004. Single-channel analysis of KCNQ K+ 

channels reveals the mechanism of augmentation by a cysteine-modifying 

reagent. J Neurosci. 24:5079-5090. 

Mongin, A.A. 2016. Volume-regulated anion channel—a frenemy within the brain. 

Pflugers Archiv. 468:421-441. 

Mulvaney, A.W., C.I. Spencer, S. Culliford, J.J. Borg, S.G. Davies, and R.Z. Kozlowski. 

2000. Cardiac chloride channels: hysiology, pharmacology and approaches for 

identifying novel modulators of activity. Drug Discov Today. 492-505. 

Noh, S., S.R. Lee, Y.J. Jeong, K.S. Ko, B.D. Rhee, N. Kim, and J. Han. 2015. The direct 

modulatory activity of zinc toward ion channels. Integr Med Res. 4:142-146. 

Pace, N.J., and E. Weerapana. 2014. Zinc-binding cysteines: diverse functions and 

structural motifs. Biomolecules. 4:419-434. 

Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D.E. Clapham. 1992. 

Expression cloning of an epithelial chloride channel. Nature. 356:238–241. 

Park, S. 2016. High affinity block of ICl,swell by Thiol Reactive Small Molecules 

[Doctoral dissertation]. Richmond, VA: Virginia Commonwealth University. 

Pesterfield, L.L. 2001. Ions in Solution—Basic Principles of Chemical Interaction. 2nd 

Edition. Harwood Publishing. Westergate, West Sussex, UK. 446 pp. 



www.manaraa.com

 

 

66 
 

Qiu, Z., A.E. Dubin, J. Mathur, B. Tu, K. Reddy, L.J. Miraglia, J. Reinhardt, A.P. Orth, 

and A. Patapoutian. 2014. SWELL1, a plasma membrane protein, is an essential 

component of volume-regulated anion channel. Cell. 157:447-458. 

Radany, E.H., M. Brenner, F. Besnard, V. Bigornia, J.M. Bishop, and C.F. Deschepper. 

1992. Directed establishment of rat brain cell lines with the phenotypic 

characteristics of type 1 astrocytes. Proc of the Natl Acad of Sci USA. 89:6467-

6471. 

Ren, Z., and C.M. Baumgarten. 2005. Antagonistic regulation of swelling-activated Cl
-
 

current in rabbit ventricle by Src and EGFR protein tyrosine kinases. Am J 

Physiol Heart Circ Physiol. 288:H2628-2636. 

Rubino, J.T., and K.J. Franz. 2012. Coordination chemistry of copper proteins: How 

nature handles a toxic cargo for essential function. J Inorg Biochem. 107:129-143. 

Rydzik, A.M., J.r. Brem, W.B. Struwe, G.T. Kochan, J.L.P. Benesch, and C.J. Schofield. 

2014. Ejection of structural zinc leads to inhibition of γ-butyrobetaine 

hydroxylase. Bioorg Med Chem Lett. 24:4954-4957. 

Sakurai, T., M. Kanayama, T. Shibata, K. Itoh, A. Kobayashi, M. Yamamoto, and K. 

Uchida. 2006. Ebselen, a seleno-organic antioxidant, as an electrophile. Chem Res 

Toxicol. 19:1196-1204. 

Sheets, M.F., and D.A. Hanck. 1992. Mechanisms of extracellular divalent and trivalent 

cation block of the sodium current in canine cardiac Purkinje cells. J Physiol. 

454:299-320. 

 

 



www.manaraa.com

 

 

67 
 

Sirianant, L., P. Wanitchakool, J. Ousingsawat, R. Benedetto, A. Zormpa, I. Cabrita, R. 

Schreiber, and K. Kunzelmann. 2016. Non-essential contribution of LRRC8A to 

volume regulation. Pflugers Archiv. 468:805-816. 

Smyth, D.G., A. Nagamatsu, and J.S. Fruton. 1960. Some reactions of N-Ethylmaleimide. 

J Am Chem Soc. 82:4600-4604. 

Spires, S., and T. Begenisich. 1990. Modification of potassium channel kinetics by 

histidine-specific reagents. J Gen Physiol. 96:757-775. 

Steinbach, A.B. 1968. A kinetic model for the action of xylocaine on receptors for 

acetylcholine. J Gen Physiol. 52:162-180. 

Trzaskowski, B., L. Adamowicz, and P.A. Deymier. 2007. A theoretical study of zinc(II) 

interactions with amino acid models and peptide fragments. J Biol Inorg Chem. 

13:133-137. 

Tai, K.K. and S.A. Goldstein. 1998. The conduction pore of a cardiac potassium channel. 

Nature. 391:605-608 

Tseng, G.N. 1992. Cell swelling increases membrane conductance of canine cardiac 

cells: evidence for a volume-sensitive Cl channel. Am J Physiol. 262:C1056-1068. 

Valverde, M.A., M. Diaz, F.V. Sepulveda, D.R. Gill, S.C. Hyde, and C.F. Higgins. 1992. 

Volume-regulated chloride channels associated with the human multidrug-

resistance P-glycoprotein. Nature. 355:830–833. 

Von Stedingk, E.M., P.F. Pavlov, V.A. Grinkevich, and E. Glaser. 1997. Mitochondrial 

protein import: Modification of sulfhydryl groups of the inner mitochondrial 

membrane import machinery in Solanum tuberosum inhibits protein import. Plant 

Mol Biology. 35:809-820. 



www.manaraa.com

 

 

68 
 

Voss, F. K. et al. 2014 Identification of LRRC8 heteromers as an essential component of 

the volume-regulated anion channel VRAC. Science. 344:634–638. 

Woodhull, A.M. 1973. Ionic Blockage of Sodium Channels in Nerve. J Gen Physiol. 

61:687-708. 

Wang, G.K., and G.R. Strichartz. 2012. State dependent Inhibition of Sodium Channels 

by Local Anesthetics: A 40-year evolution. Biochem (Mosc) Suppl Ser A Membr 

Cell Biol. 6(2): 120-127 

Yi, G., Sun, B., Yang, F., and Chen, D. 2001. Bionic synthesis of ZnS:Mn nanocrystals 

and their optical properties. J Mat Chem. 11: 2928–2929 

Zheng, J., and M.C. Trudeau. 2015. Handbook of Ion Channels. 1st edition. CRC Press. 

Boca, Raton, FL. 616 pp.  

  



www.manaraa.com

 

 

69 
 

 

 

VITA 

In Monterey, California where Noah was born, not raised- 

 On the basketball court is where he spent most of his undergraduate days.  

 He was chilling out, maxing and relaxing, while moderately schooling,  

when he decided he needed to go to MCV to get moving.  

Noah took a drive down to Richmond to find that patch clamping was “in” 

 and asked Dr. Baumgarten when he could begin. 

 Alas it is now that he seeks post-graduate admission,  

as he aspires to accomplish many great things as a physician.  

 

 


	Irreversible Zinc Block of the Swelling-activated Chloride Current in DI TNC1 Astrocytes
	Downloaded from

	tmp.1470425461.pdf.MB9c1

